Vlasov moments, integrable systems and singular solutions
نویسندگان
چکیده
منابع مشابه
4 M ay 2 00 7 Vlasov moments , integrable systems and singular solutions
The Vlasov equation for the collisionless evolution of the single-particle probability distribution function (PDF) is a well-known Lie-Poisson Hamiltonian system. Remarkably, the operation of taking the moments of the Vlasov PDF preserves the Lie-Poisson structure. The individual particle motions correspond to singular solutions of the Vlasov equation. The paper focuses on singular solutions of...
متن کاملSingular solutions for geodesic flows of Vlasov moments
The Vlasov equation for the collisionless evolution of the singleparticle probability distribution function (PDF) is a well-known example of coadjoint motion. Remarkably, the property of coadjoint motion survives the process of taking moments. That is, the evolution of the moments of the Vlasov PDF is also a form of coadjoint motion. We find that geodesic coadjoint motion of the Vlasov moments ...
متن کاملRegularity and propagation of moments in some nonlinear Vlasov systems
We introduce a new approach to prove the regularity of solutions to transport equations of the Vlasov type. Our approach is mainly based on the proof of propagation of velocity moments, as in a previous paper by Lions and Perthame [16]. We combine it with Moment Lemmas which assert that, locally in space, velocity moments can be gained from the kinetic equation itself. We apply our theory to tw...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملExamples of Integrable and Non-integrable Systems on Singular Symplectic Manifolds
We present a collection of examples borrowed from celestial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization transformations, Appell’s transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lowering its rank at certain points. The resulting geometrical stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2008
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2007.08.054